Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Morpholinium tetraoxidorhenate(VII)

Mikhail S. Grigoriev,* Konstantin E. German and Alesia Ya. Maruk

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospekt, 119991 Moscow, Russian Federation Correspondence e-mail: grigoriev@ipc.rssi.ru

Received 9 August 2007; accepted 10 August 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.010; wR factor = 0.020; data-to-parameter ratio = 34.3.

The title salt, $(C_4H_{10}NO)[ReO_4]$, contains slightly distorted tetrahedral $[ReO_4]^-$ anions [Re-O = 1.7224 (11)-1.7361 (11) Å]. The structure consists of alternating cationic and anionic layers parallel to (100). The cations and anions are linked by $N-H\cdots O$ hydrogen bonds into chains along [100].

Related literature

See Grigoriev *et al.* (2007) for the structure of guanidinium tetraoxidorhenate.

Experimental

Crystal data

 $(C_4H_{10}NO)[ReO_4]$ $M_r = 338.33$ Orthorhombic, $Pca2_1$ a = 12.4401 (3) Å b = 5.7480 (2) Å c = 11.0420 (3) Å

Data collection

Bruker Kappa APEXII areadetector diffractometer T = 100 (2) K $0.16 \times 0.12 \times 0.10 \text{ mm}$

Absorption correction: multi-scan

(SADABS; Sheldrick, 2004)

V = 789.57 (4) Å³

Mo $K\alpha$ radiation

 $\mu = 15.37 \text{ mm}^{-1}$

Z = 4

 $T_{\min} = 0.239, T_{\max} = 0.309$ (expected range = 0.167–0.215) 21183 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.010$	H-atom parameters constrained
$wR(F^2) = 0.020$	$\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$
S = 0.94	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$
3460 reflections	Absolute structure: Flack (1983),
101 parameters	1650 Friedel pairs
l restraint	Flack parameter: 0.004 (4)

Table 1

Selected geometric parameters (Å, °).

Re1-O1	1.7361 (11)	Re1-O3	1.7224 (11)
Re1-O2	1.7349 (13)	Re1-O4	1.7256 (13)
O1-Re1-O2	108.44 (6)	O2-Re1-O3	110.14 (6)
O1-Re1-O3	110.39 (6)	O2-Re1-O4	109.39 (6)
O1-Re1-O4	109.41 (6)	O3-Re1-O4	109.06 (6)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$N1 - H1A \cdots O2^{i}$	0.92	1.99	2.8529 (17)	155		
$N1 - H1B \cdots O1$	0.92	1.98	2.8855 (18)	168		
Summatry and $(i) = 1 + 1 =$						

Symmetry code: (i) $x - \frac{1}{2}, -y + 1, z$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2306).

References

- Bruker (1998). SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Grigoriev, M. S., German, K. E. & Maruk, A. Ya. (2007). Acta Cryst. E63, m2061.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic compounds

 $R_{\rm int} = 0.021$

3460 independent reflections 3315 reflections with $I > 2\alpha(I)$ supplementary materials

Acta Cryst. (2007). E63, m2355 [doi:10.1107/S1600536807039608]

Morpholinium tetraoxidorhenate(VII)

M. S. Grigoriev, K. E. German and A. Y. Maruk

Comment

The title compound, (I) (Fig. 1), contains slightly distorted tetrahedral ReO_4^- anions with Re—O distances from 1.7224 (11) to 1.7361 (11) Å (Table 1). Morpholinium cations have chair conformation.

The structure of (I) can be described as alternating cationic and anionic layers parallel to the (100) plane (Fig. 2). Morpholinium cations act as proton donors in two hydrogen bonds with O atoms of two ReO_4^- anions from different anionic layers (Table 2). The hydrogen bonds link cations and anions into chains in the [100] direction (Fig. 2).

Experimental

Synthesis of (I) was carried out as a neutralization reaction by dissolution of morpholine under intensive stirring in 0.2 M water solution of HReO₄ at room temperature to achieve pH = 7, followed by evaporation of the resulting solution over concentrated H₂SO₄. The compound was recrystallized from ethanol.

Refinement

The H atoms of NH₂ and CH₂ groups were refined in idealized geometrical positions with displacement parameters being equal to 1.2 times U_{eq} of the attached N or C atoms.

Figures

Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Dashed line indicates the hydrogen-bonding interaction.

Fig. 2. The packing of (I) showing chains of hydrogen bonds.

Morpholinium tetraoxidorhenate(VII)

Crystal data (C₄H₁₀NO)[Re₁O₄] $F_{000} = 624$ $D_{\rm x} = 2.838 {\rm Mg m}^{-3}$ $M_r = 338.33$ Mo Kα radiation Orthorhombic, Pca21 $\lambda = 0.71073 \text{ Å}$ Hall symbol: P 2c -2ac Cell parameters from 7854 reflections *a* = 12.4401 (3) Å $\theta = 3.3 - 35.0^{\circ}$ b = 5.7480(2) Å $\mu = 15.37 \text{ mm}^{-1}$ c = 11.0420(3) Å T = 100 (2) K $V = 789.57 (4) \text{ Å}^3$ Fragment, colourless Z = 4 $0.16 \times 0.12 \times 0.10 \text{ mm}$

Data collection

3460 independent reflections
3315 reflections with $I > 2\alpha(I)$
$R_{\rm int} = 0.021$
$\theta_{\text{max}} = 35.0^{\circ}$
$\theta_{\min} = 3.3^{\circ}$
$h = -20 \rightarrow 19$
$k = -9 \rightarrow 9$
$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.010$	$w = 1/[\sigma^2(F_0^2)]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.020$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.94	$\Delta \rho_{max} = 0.70 \text{ e} \text{ Å}^{-3}$
3460 reflections	$\Delta \rho_{min} = -0.60 \text{ e } \text{\AA}^{-3}$
101 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
1 restraint	Extinction coefficient: 0.00092 (6)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 1650 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.004 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Re1	0.733624 (3)	0.804729 (7)	0.201310 (9)	0.00950 (2)
01	0.62050 (9)	0.9089 (2)	0.27573 (10)	0.0162 (2)
O2	0.75192 (9)	0.5155 (2)	0.24128 (12)	0.0166 (2)
O3	0.84512 (9)	0.9655 (2)	0.24066 (10)	0.0169 (2)
O4	0.71429 (11)	0.8243 (2)	0.04689 (12)	0.0174 (2)
O5	0.53574 (10)	0.5438 (2)	0.59191 (10)	0.0182 (2)
N1	0.45216 (10)	0.5969 (2)	0.35282 (12)	0.0115 (2)
H1A	0.4004	0.5615	0.2963	0.014*
H1B	0.5006	0.6972	0.3177	0.014*
C1	0.48749 (16)	0.7571 (3)	0.55316 (16)	0.0192 (3)
H1C	0.5433	0.8596	0.5180	0.023*
H1D	0.4557	0.8378	0.6238	0.023*
C2	0.40096 (14)	0.7119 (3)	0.45982 (14)	0.0151 (3)
H2A	0.3446	0.6099	0.4943	0.018*
H2B	0.3671	0.8603	0.4350	0.018*
C3	0.50859 (13)	0.3794 (3)	0.39090 (15)	0.0141 (3)
H3A	0.5476	0.3123	0.3210	0.017*
H3B	0.4553	0.2635	0.4191	0.017*
C4	0.58711 (12)	0.4327 (3)	0.49177 (14)	0.0138 (3)
H4A	0.6208	0.2861	0.5196	0.017*
H4B	0.6447	0.5350	0.4603	0.017*
H4B	0.6447	0.5350	0.4603	0.017*

Alomic displacement barameters (A	displacement parameters $(Å^2)$
-----------------------------------	---------------------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re1	0.00842 (2)	0.01046 (2)	0.00962 (2)	0.00157 (1)	-0.00002 (7)	0.00069 (7)
O1	0.0140 (5)	0.0163 (5)	0.0182 (5)	0.0030 (4)	0.0045 (4)	0.0027 (4)
O2	0.0157 (5)	0.0128 (5)	0.0213 (5)	0.0040 (4)	0.0013 (4)	0.0046 (4)
O3	0.0130 (5)	0.0193 (6)	0.0183 (5)	-0.0017 (4)	0.0005 (4)	-0.0049 (4)
O4	0.0184 (6)	0.0208 (6)	0.0129 (5)	0.0022 (4)	-0.0027 (4)	0.0009 (4)
O5	0.0269 (6)	0.0186 (6)	0.0092 (5)	0.0108 (5)	-0.0016 (4)	0.0001 (4)
N1	0.0126 (5)	0.0139 (6)	0.0080 (5)	-0.0006 (5)	-0.0014 (4)	-0.0015 (5)

supplementary materials

C1	0.0208 (0)	0.01(0.7)	0.0100 (7)	0.010((())	0.0040 (()	0.0024(()
	0.0298 (9)	0.0109(7)	0.0109(7)	0.0106 (6)	-0.0049(6)	-0.0034(6)
C2	0.0170(7)	0.0175(7)	0.0109(7)	0.0001 (6)	0.0017 (5)	0.0021 (6)
	0.0157 (7)	0.0118 (7)	0.0148 (6)	0.0014 (5)	-0.0021 (5)	-0.0046 (6)
C4	0.0131 (6)	0.0152 (7)	0.0130 (6)	0.0031 (5)	-0.0019 (5)	-0.0025 (5)
Geometric param	neters (Å, °)					
Re1—O1		1.7361 (11)	C1—C2	2	1.513	(2)
Re1—O2		1.7349 (13)	C1—H1	IC	0.9900)
Re1—O3		1.7224 (11)	C1—H1	lD	0.9900)
Re1—O4		1.7256 (13)	С2—Н2	2A	0.9900)
O5—C4		1.4279 (19)	С2—Н2	2B	0.9900)
O5—C1		1.430 (2)	C3—C4	ł	1.513	(2)
N1—C3		1.494 (2)	С3—Н3	BA	0.9900)
N1—C2		1.496 (2)	С3—Н3	BB	0.9900)
N1—H1A		0.9200	C4—H4	1A	0.9900)
N1—H1B		0.9200	C4—H4	4B	0.9900)
O1—Re1—O2		108.44 (6)	N1—C2	2—C1	108.11	(14)
O1—Re1—O3		110.39 (6)	N1—C2	2—Н2А	110.1	
O1—Re1—O4		109.41 (6)	C1—C2	2—H2A	110.1	
O2—Re1—O3		110.14 (6)	N1—C2	2—H2B	110.1	
O2—Re1—O4		109.39 (6)	C1—C2	2—H2B	110.1	
O3—Re1—O4		109.06 (6)	H2A—(С2—Н2В	108.4	
C4—O5—C1		109.84 (12)	N1—C3	3—C4	109.94	4(13)
C3—N1—C2		110.34 (12)	N1—C3	3—НЗА	109.7	
C3—N1—H1A		109.6	C4—C3	B—H3A	109.7	
C2—N1—H1A		109.6	N1—C3	3—Н3В	109.7	
C3—N1—H1B		109.6	C4—C3	В—НЗВ	109.7	
C2—N1—H1B		109.6	H3A—0	С3—Н3В	108.2	
H1A—N1—H1B		108.1	O5—C4	1—C3	111.83	(12)
O5—C1—C2		110.81 (15)	O5—C4	1—H4A	109.3	
O5-C1-H1C		109.5	C3—C4	H4A	109.3	
C2—C1—H1C		109.5	O5—C4	1—H4B	109.3	
O5-C1-H1D		109.5	C3—C4	I—H4B	109.3	
C2—C1—H1D		109.5	H4A—0	C4—H4B	107.9	
H1C-C1-H1D		108.1				
C4—O5—C1—C	2	62.46 (19)	C2—N1	L	-54.28	3 (17)
C3—N1—C2—C	1	56.60 (17)	C1—05	5—C4—C3	-59.40	5 (19)
O5—C1—C2—N	1	-60.92 (18)	N1—C3	3—C4—O5	55.57	(17)
TT 1 1 1	(8.0)					
пyarogen-bond g	geometry (A, ~)					

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N1—H1A···O2 ⁱ	0.92	1.99	2.8529 (17)	155
N1—H1B…O1	0.92	1.98	2.8855 (18)	168
Symmetry codes: (i) $x-1/2$, $-y+1$, z .				

